PLASMA-ASSISTED
COMBUSTION SYNTHESIS
OF HYDROGEN

ChevronTexaco Alexander Fridman,
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Hydrogen Production from Hydrocarbons, H20 and H2S,
Stimulated by Non-Thermal Atmospheric Pressure Plasma

 Plasma-Chemical Hydrogen Production from Water
 Plasma-Chemical Hydrogen Production from H2S

* Plasma-Assisted Partial Oxidation of Methane
 Hydrogen Production in Tornado/Gliding Arc

* Experiments vs Modeling



http://plasma.mem.drexel.edu/news/index.html

Non-Equilibrium Plasma-Chemical
Hydrogen Production from Water

H2 Production Cycle Based on CO2 Dissociation in Plasma
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Process Characteristics:

*Gas Temperature 200-400C
*Electron Temperature 15,000K
*H2S Conversion Degree: 95%
*Products: Hydrogen, Sulfur
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PLASMA-ASSISTED COMBUSTION
SYNTHESIS OF HYDROGEN

ChevronTexac® plasma Catalytic H2 Production from Natural Gas
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’A( PLASMA-ASSISTED COMBUSTION
SYNTHESIS OF HYDROGEN

(hevrontexacd  pjasma Catalysis Vs. Thermo-Catalytic Partial Oxidation

CH; +1/2 (0O, +3.76 N;) —fomze—> CO +2 H,+ 1.88 N, + 36 kJ/mol

Thermo-Catalytic Conversion: Plasma-Catalysis:
*High Temperature Requirements Low Temperature Operation
(>1100K) (~750K)

Large Specific Size of Reactor Large Specific Productivity
*Special Materials Requirements Lower Temperature
and Reactor Design Requirements

*Sulfur from Natural Gas Causes *No Sensitivity to sulfur or
Catalyst Poisoning other impurities

Low Conversion at Moderate *Possibility to Operate at

Equivalence Ratios (3.0-3.5) High Equivalence (3.5-4.5)



’A( Gliding Arc as Transitional
Non-Equilibrium Plasma:

ChevronTexaco
THERMAL
PLASMA MAJOR CHALLENGES :

Very High Plasma power and » Power Density & Productivity.
density.

* Selectivity.
*High Gas temperature.

*No selective chemical process can
be achieved.

NON-THERMAL
PLASMA

*Low gas temperature and very high
electron temperature.

*Low Power Density

*Chemical Selectivity can be achieved.

“Gliding Arc in Tornado”



“GLIDING ARC in Flat Geometry”
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ChevronTexaco

Fast Equilibrium to Non-Equilibrium Transition
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«—Initial Breakdown—»
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Schematic Diagram for GAT reactor.

“THE GLIDING ARC IN TORNADQ”

Gliding Arc in Tornado Flow

*Gliding Arc in Tornado works 1n a
Reverse Vortex Flow setup.

A circular and spiral electrode 1s
placed in the plane of the flow act
as diverging High Voltage DC
Electrodes.

*The flow conditions and the
characteristics of the power supply
determine the shape of the spiral
electrode.



Gliding Arc “Tornado”

ChevronTexaco




“It Can Melt a Metal Rod But You Can Touch It”




Plasma Catalytic Methane Partial Oxidation

' B THE EXPERIMENTAL
ChevronTexaco | i SETUP
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Conversion Degree
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Simulation Vs Experiments
The conversion degree: a = ([H2] + [CO]) / 3[CH4]
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"( Simulation Vs Experiments
Electric Energy Cost = W_(KW-hr)/ meter cube of

ChevronTexaco Syn-Gas (Output Syn-Gas Energy = 3.00 kWh/m?3)
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"( Simulation Vs Experiments
Methane Energy Cost = [CH4] (KW-hr) per

meter-cube of Syn-Gas

ChevronTexaco
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"( Simulation Vs Experiments
Total Energy Cost = (Electric Energy Cost +

ChevronTexaco \fethane Energy Cost) per meter Cube of Syn-Gas
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Simulation Vs Experiments
Efficiency = KW-hr of Syn-Gas Produced / Total
ChevronTexaco Energy Input in KW-hr
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Theoretical maximum efficiency can be 0.84.
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Highlights of Plasma-Catalytic

ChevronTexaco Partial OXidatiOIl:

*Only 2.0% of Total Energy Consumption Required for
Plasma Power

*Electric Energy Cost 0.06 kWh/m3 of syn-gas (energy from
syn-gas = 3.0 KW-hr/m?).

*92% conversion at Equivalence ratio of 3.3.

Internal Heat Recuperation (Preheating) at 750 K.

*No soot Deposition.

sLarge Specific Production rates due to low residence times.
Effective for Higher Hydrocarbon conversion to Syn-Gas.

*Not Sensitive to Sulfur and Other Impurities.
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	Hydrogen Production from Hydrocarbons, H2O and H2S, Stimulated by Non-Thermal Atmospheric Pressure Plasma

