link to Home Page

Lack of Emissions


European Southern Observatory

http://www.eso.org/
A Spectrum of Comet Hale-Bopp
11 September 1995

  • Comets are believed to consist mostly of water ice (H2O), but the temperature at the present distance from the Sun (~ 125 K, or -150 C) is too low for any considerable amount of water ice to evaporate. Thus water molecules are unlikely to be involved in this process. Cyanic acid (HCN), carbon monoxide (CO) or carbon dioxide (CO2) are more likely candidates.

  • However, when they lave the nucleus, these molecules are broken down and/or ionized rather quickly by the sunlight and/or the solar wind particles. Their presence may instead be indicated by the detection of CN (radical) and CO+ (ion). Both of these molecules emit radiation in the ultraviolet part of the spectrum; CN at ~ 3883 A (388.3 nm) and CO+ at ~ 4010 and ~ 4260 A, respectively. One way to decide which gas has caused the observed dust outflow is therefore to obtain a spectrum of Comet Hale-Bopp covering this spectral region.

  • Press Photo 27/95 [87K] shows such a spectrum, after it has been subjected to preliminary image processing. It is based on a Hale-Bopp spectrum, obtained in the morning of September 5, 1995, by visiting astronomer Birgitta Nordström (Copenhagen University Observatory, Denmark) with a CCD on the Boller & Chivens spectrograph at the ESO 1.5-metre telescope at La Silla. The exposure lasted 30 minutes and the slit was placed in the East-West direction. Hector Vega (ESO) assisted during this observation.

  • This file was transmitted together with the calibration files to Heike Rauer (Observatoire de Meudon, Paris, France), who performed a provisional reduction. In this process, the instrument and sky artifacts were removed and the comet spectrum was divided with the spectrum of a G0 star, whose spectrum closely ressembles that of the Sun. This procedure removes as far as possible the contribution from the sunlight reflected of the cometary dust and enhances any surplus emission, for instance from the above mentioned gas molecules.

  • The spectrum covers the region from about 3848 A (left) to 4841 A (right). The scale is linear and the pixel size in the direction of dispersion is 3 A. A few vertical, dark lines are seen, for instance at 3880, 3933, 3969, 4034 and 4695 A; they are caused by incomplete subtraction of the sky spectrum, recorded simultaneously.

  • As can be seen, there is no sign of CN and CO+ emission lines at the indicated wavelengths in this spectrum. They would have shown up as white lines, extending above and below the otherwise "flat" spectrum. The sensitivity of this observation was apparently not sufficient to detect such emissions, if present at all. Indeed, this equipment was not optimized for this particular kind of observation which was made in the course of another observing programme, concerned with galactic stars of low metal abundance.

  • This negative result may be interpreted in several ways. Either there has always been very little gas of this type in Comet Hale-Bopp and another, so far unknown agent is active, or the gaseous outflow has stopped in the meantime. Other observations are needed to cast more light on this question.

European Southern Observatory

http://www.eso.org/
25 August 1995

  • The ESO observations are of many different types and have involved many observers. At the 15-metre Swedish-ESO Submillimetre Telescope (SEST), Albert Nummelin, Anne-Marie Lagrange and Thierry Forveille searched on August 3-4 and 9-10 for emissions from the CO molecule. According to one theory, CO gas may possibly be the driving agent that is responsible for `lifting' dust particles off a comet's nucleus when it is more than about 750 million kilometres from the Sun. However, no emission from CO was seen to the sensitivity limit of these observations, thus placing important constraints on the proposed mechanism.

  • Normally, CN is one of the first gaseous molecules to be detected in the coma of comets approaching the Sun. For instance, in Comet Halley, emissions from CN were first seen at a heliocentric distance of about 725 million kilometres. It would therefore be of great interest to learn whether CN is already now present in the coma of Comet Hale-Bopp. Spectroscopic observations with the ESO 1.5-metre telescope were performed by Anne-Marie Lagrange, Jean Luc Beuzit, Stephane Guisard and Pierpaolo Bonfanti on August 3-4 and 9-10. They have now been reduced and do not show any such emission. At the present distance of the comet from the Sun, the temperature is too low for water ice (the major component of cometary nuclei) to evaporate efficiently, and with the non-detection of CO and CN, the driving gas that has produced the well visible dust cloud around the nucleus of Comet Hale-Bopp is still unknown.